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A new quantum mechanical derivation of the photocounting 
distribution 
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Yvette, France 

Received 16 February 1977 

Abshd.  We present a new direct derivation of the photocounting distribution. Our 
quantum mechanical formulation is valid to all orders in perturbation theory. 

1. Introduction 

Some of the theories of photoelectric detection that have been proposed (see for 
example Glauber 1964, Kelley and Kleiner 1964, Lehmberg 1968, Rocca 1973, 
Arnedo and Rocca 1974, Klauder and Sudarshan 1968 (see 0 8), Rousseau 1975) are 
valid only to first order in perturbation theory. 

In these theories meaningless results appear for large times. For example, the 
probability P"'(t) for a single atom to be ionized by an incoming mono-mode light 
grows linearly with time, instead of being bounded by unity; moreover in the case of the 
n-photon field, the probabilities become negative for large sampling time. These 
unsavoury features disappear when multiple transitions between the excited states and 
the ground state are taken into account. In a complete quantum mechanical treatment 
the field is attenuated as a result of the detection process itself (Mollow 1968, Scully and 
Lamb 1969). The approach we present here is more direct, because we have only to 
study the simple case of a photodetector inserted in a one-photon field (§ 2). This result 
together with a previously published result of the independency of atoms (Rocca 1973, 
Arnedo and Rocca 1974) provides the counting distribution for a detector immersed in: 
(i) an n-photon field; (ii) an arbitrary field (described by a density matrix on the Fock 
basis or on the coherent states basis (0 3)). We show that the photocounting distribution 
can be expressed as a compound Poisson distribution. The characteristic parameter of 
this distribution is proportional to the reduced intensity because of the depletion 
phenomena due to the photodetector. 

2. Photodetector in a one-photon field 

2.1. Single atom in a one -photon field 

Consider first a single atom in a one-photon field. It is shown in the appendix that the 
probability for the atom to be ionized in the time interval (0, t) is 

P"'(t) = 1 - (exp( --s j0' I @ )  de)) 
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where I ( 0 )  is the intensity of the field and the angular bracket denotes an ensemble 
average. According to first-order perturbation theory, the transition probability is 
(Glauber 1964): 

P ( t )  = s(I) t ,  (2) 

an expression which agrees with equation (1) for small times. Equation (2) is unaccept- 
able for large times since the probability is unbounded whereas equation (1) is valid at 
all times. 

For an n -photon field the transition probability is (see the appendix): 

p(l)(f) = 1 - e-sm. ( 3 )  

This expression is very similar to the one in equation (l), because strong fields can be 
considered as n-photon fields with I ( f3)  - n. This property of strong fields follows from 
the photon distribution pnn = e-' I " /n  ! which gives U: = ii ; therefore, for strong fields, 
un/Jii tends to zero as ii tends to infinity. Semi-classical and quantum theories thus give 
the same transition probabilities (Oliver 197 1). 

2.2. An N-atom detector 

Next, consider an N-atom detector. Each atom can be ionized by the incident 
electromagnetic field with the probabilities given above. 

The Schrodinger equation for the whole system (atoms +field) can be decomposed 
into N first-order differential equations. The time derivative of the probability ampli- 
tude b K  *... Kp (gl , . . a l  . . . a,. . . gN; t )  that p photons of modes K ,  . . . K, are absorbed 
andp atoms are in states a l  . . . a,, analogous to the b(g, t )  used in the appendix, is then a 
linear combination of bK1.. .Kp--l  and bK1...Kp+l. In general, this system of equations cannot 
be solved in closed form. For the one-photon field, however, we have only two 
equations similar to equations (A.3) and (A.4) in the appendix. 

The probability that N atoms remain in the ground state at time t is then 

Ib(gl . . . gN, t)I2 = e-Nsr. (4) 

The counting distribution for zero photons and one photon to be absorbed by the 
detector immersed in a one-photon field is given by: 

P(0, t )  = e-"O' P( 1, t )  = 1 - e-OO' ( 5 )  

where a0 = sN. 

3. Photocounting distribution 

To obtain the counting distribution for an n-photon field, we use the two following 
results: (i) the independence of the atoms inside the detector (Rocca 1973, Arnedo and 
Rocca 1974); and (ii) the counting distribution for a one-photon field given in equation 
(5 ) .  

Consider an n-photon field. The probability of counting m photons is the probabil- 
ity that an event occurs m times in n independent trials. A counting experiment is a set 
of n successive counting experiments, each with a one-photon field. The probability is 
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that of obtaining m heads in n tossings of a coin, which leads to the Bernouilli 
distribution 

p(m, t )  = ( n ) ~ ( l ,  t)mP(O, t1n-m (6) m 

where P(1, t )  and P(0, t )  are given in equation (5 ) .  
This result was obtained by Mollow (1968) and Scully and Lamb (1969), but their 

proof is more complicated than this one. 
For a general field we weight the expression in equation (6), relative to the n-photon 

field, by the elements of the density matrix pnn. The result is, in the mono-mode case 

or 

P ( ~ ,  t )  = (: e-=+a(l-exp-a o '(a'a)"[l -exp(-aot)]"/n! :>. 

~ ( m ,  t )  = (e-y(')y(r)m/m !> 

(8) 

(9) 

For a classical field having a random intensity, the counting distribution is 

where the parameter is proportional to a reduced intensity 

y ( t )  = a. i,' I ( 0 )  e-aoB de. 

From this new expression of the counting distribution (equations (8) and (9)), it is clear 
that intensity and time do not play the same role in a counting experiment. This 
observation was just made by Picinbono and Rousseau (1977). 
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Appendix 

Consider an atom immersed in a field. We begin with the semi-classical theory of 
disintegration of a discrete state coupled to a continuum given in Cohen-Tannoudji 
e ta l ( l973) .  We shall use their notation for the atomic part. The results of that book can 
be generalized to quantized fields described by an operator E(r, t )  (Glauber 1963, 
1964). The interaction Hamiltonian is 

V(t) = -e c 4y( t )J5(r ,  t ) .  (A. 1) 
Y 

At time t the system can be decomposed on the basis {lg@iF), la @fF(K))} as 
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where lg) and la) denote respectively the ground state and one of the excited states in 
the continuum of the atom; liF) and If,@)) are the initial and final states of the electric 
field. 

When the Schrodinger equation is applied to the state vector in equation (A.2), we 
obtain 

where oK = (EiF-EfdKJ/h. The atom is supposed to be in its ground state at time t = 0, 
therefore bK(u, t) depends only on b(g,  t). We obtain 

d (g, t )  = -b(g,  t )  1 (2 +- "K> (iFIE'(f)lfF(K)>(fF(K)(E-(f)liF) (A.5) K 2  h 
where we have introduced the spectral response of the atom. This spectral response is 
generally broad compared to the spectrum of the incident light (Glauber 1964, 
Rousseau 1975). Let us consider the atomic spectral response defined by Cohen- 
Tannoudji et a1 (1973) 

In equation (A.5), we have set 

The coefficients in equation (A.7) are independent of the mode K. Using the complete- 
ness relation for the states If&)), we obtain the simple differential equation for b(g,  r)  

(A.8) 

where n is the total number of photons (n = X K n K )  of the field in the Fock state 
/iF)= ({nK}I. The probability that the atom remain in the ground state up to time t is 
lb(g, t)l*, and the transition probability for a { n K }  photon field is 

6(g, t )  = -b(g,  t ) ( s  +iSt-)n/h 

P(')( t )  = 1 -e-sm. (A.9) 

In the case of a general stationary field whose density matrix has diagonal elements 
on the Fock basis, or has a P representation, the transition probability becomes 

P ( t )  = 1 - 1 p{",,",) e-srxnK (A.lO) 
K 

or 

P'"(t) = 1 - P{aK}  fl exp[-laKI*(l -e-"')] d2aK. (A. 11) 

Alternatively this transition probability can be written in terms of the classical 
I K  

undimensional intensity Z of the field 

Pcl)(t) = 1 - (exp[-Z( 1 -e-")]), 
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for a mono-mode field, or 
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(A.12) 

for a multi-mode field. 
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